O xurel znane

Learn Elementary School Math with Coding
Learning Handbook

Handbook Introduction and Usage Information

This learning handbook contains descriptions
for 60 Python programs (22 with graphical
interfaces and 38 with command line
interfaces). These programs cover all 49 units
from the third- to fifth-grade Chinese
mathematics textbooks of the People's
Education Press. This approach of learning
elementary math with coding allows learners to
efficiently and effectively study mathematics
while simultaneously becoming proficient in a
programming language.

The “Learn Elementary School Math with
Coding” project can serve as a supplementary
learning resource for school mathematics
curriculums or a way to accelerate the
completion of elementary school mathematics.
For a detailed introduction, please refer to the
project website: https://feli10.github.io/math-
coding.

For code download and usage instructions,
please refer to the project’s GitHub repository:
https://github.com/feli10/math-coding.

The page structure for each unit in the
handbook is as shown in the following diagram:

O— Unit Code

2-Digit Addition and Subtraction

“/ Main Math Content

. C_O—— Difficulty

GUI or CLI

Practice 2-Digit Addition

File Name “E)—— Main Coding Skills

l Randoml y generate a specified number of '

-digit additi on and subtraction practice

Program Description

/ Program Screenshots

Unit Identifier

The organization of the handbook is based on
the elementary school Chinese mathematics
textbooks of the People's Education Press.
Each unit of this handbook is identified by a
three-digit number starting with "G," for
example, G311. The digits in the number have
the following meanings:

- The "G" and the digit following it represent the
grade.

- The second digit may be either 1 or 2. 1
represents the first semester, and 2 represents
the second semester.

- The third digit represents the specific unit
within the semester.

Therefore, G311 identifies the first unit of the
first semester of third grade.

Program Description

Each unit contains 1-2 Python programs
closely related to the math content of that unit.
Each program description contains the
following:

- File name.

- Graphical display or command line display.
- Difficulty rating (1 to 5 stars).

- Programming skills used.

- Program description.

- Screenshots of program output.

https://feli10.github.io/math-coding/
https://github.com/feli10/math-coding
https://feli10.github.io/math-coding/

(Garerz)

Grade 3 Semester 1

G311 Telling Time -
Hours, Minutes, and Seconds

G312 2-Digit Addition and Subtraction
G313 Measurements
G314 Vertical Addition and Subtraction

G315 Multiplication Word Problems
G316 Short Multiplication

G317 Rectangles and Squares
G318 Understanding Fractions
G319 Sets

Grade 3 Semester 2
G321 Orientations

G322 Short Division

G323 Tables

G324 2-Digit Long Multiplication
G325 Area

G326 Years, Months, and Days
G327 Understanding Decimals

G328 Combinations

1. Analog Clock;
2. Digital Clock

Practice 2-Digit Addition and Subtraction
Practice Unit Conversion

1. Vertical Addition;
2. Vertical Subtraction

Practice Multiplication Word Problems
Short Multiplication

Create Rectangle Class

Practice Comparing Fractions

Set Operations

Practice Identifying Orientations
Short Division

Creating and Displaying Tables
Long Multiplication 1

Improve Rectangle Class -
Calculate Area and Draw Rectangles

Display Calendar

1. Decimal Practice 1;
2. Visualization of Decimals

Three Common Counting Problems

(Carerz]

Grade 4 Semester 1

G411 Working with Large Numbers
G412 Large Area Units

G413 Measuring Angles

G414 3-Digit Long Multiplication
G415 Parallelograms and Trapezoids
G416 Long Division

G417 Bar Charts

G418 Optimization

Grade 4 Semester 2
G421 Order of Operations
G422 Observing Objects
G423 Basic Laws of Operation

(G424 Meaning and Properties of Decimals
G425 Triangles

(G426 Addition and Subtraction of Decimals

G427 Reflective Symmetry
(G428 Mean Value and Grouped Bar Charts
G429 Chicken and Rabbit Problem

Read Out Any Natural Number
Practice Area Unit Conversion
Draw Clock Dial

Long Multiplication 2

Counting Trapezoids

Long Division

1. Creating Bar Charts Using Matplotlib;
2. Creating Subclass of Table Class to
Draw Bar Charts

Counting Game

Evaluate Arithmetic Expressions
Three Views of Cubes

Solve 24

Decimal Practice 2

1. Draw Isosceles Triangles;
2. Draw Regular Polygons

Addition and Subtraction of Decimals
in Vertical Form

Generate Reflective Symmetric Shapes
Mean Value and Grouped Bar Charts
Chicken and Rabbit Problem

(Carerz)

Grade 5 Semester 1

G511 Decimal Multiplication
G512 Position

G513 Decimal Division

G514 Probability
G515 Simple Equations

G516 Area of Polygons
G517 Tree Planting Problem

Grade 5 Semester 2

G521 Observing Objects 2
G522 Factors and Multiples

G523 Cuboids and Cubes

G524 Meaning and Properties of Fractions
G525 Rotation

(G526 Addition and Subtraction of Fractions

G527 Line Charts
G528 Identify the Outlier

Long Multiplication of Decimals

1. Input Coordinates Based on Positions;
2. Click on Positions Based on Coordinates

1. Long Division of Decimals;
2. Practice Converting Common
Fractions to Decimals

1. Random Selection with Weights;
2. Sum of Two Dice Rolls

Solving Chicken and Rabbit Problem
Using Equations

Polygon Classes with Area Properties
Tree Planting Problem

Three Views of Cubes v2

1. Get Prime Numbers;
2. Goldbach Conjecture

1. Cuboid Class with Unit Property;
2. Practice Volume Unit Conversion

1. Greatest Common Divisor and Least
Common Multiple;
2. Convert Decimal to Simplest Fraction

Rotation
Addition and Subtraction of Fractions

Improve Data Class to Draw Multi-Line Charts
Identify the QOutlier

Telling Time -
Hours, Minutes, and Seconds

Hours, Minutes, and Seconds

1 Minuke = 60 Seconds

1 Hour = &0 Minutes

Analog Clock

[clock.py turtle, tkinter, exception

The first program simulates an analog
clock. The hour, minute, and second hands
move in real time when the program is
running. The program uses the turtle and
tkinter modules to achieve real-time
animation in a graphical display.

When the program is running, press any
button or click on the EXIT button to end
the program. The program defaults to
displaying the change in actual time.
However, parameters can be adjusted to
make the clock run faster or slower.

Digital Clock

() digital_clock.py exception

The second program creates a digital clock
in the command line interface. The clock
displays time in the format 00:00:00, where
the digits for hours, minutes, and seconds
change accordingly as time progresses.

The program allows users to set a specific
time duration (in seconds) for the timer. The
program will automatically end when the
timer expires or can be manually terminated
using Ctrl-C. By default, the timer runs in
real-time. However, parameters can be
adjusted to greatly speed up the time
change in order to quickly examine changes
in the minute and hour digits.

Please set a timer (in seconds): 80
00:01:20

Time is up!

2-Digit Addition and Subtraction

o5

-digit addition and subkraction

3-digit addition and subbtraction
where the ownes FLace s ©

Estimation with addition and
subbraction questions

Practice 2-Digit Addition
and Subtraction

[add _sub_Z2digit.py random

Randomly generate a specified number of
2-digit addition and subtraction practice
questions. Every time a question is
answered, the program will display whether
the answer is correct or incorrect. The
correct answer will be given in the case of
an incorrect answer. The total score will be
displayed after all questions are completed.
(The full score value can be set, the default
is 100 points)

Question 1/4: 26 + 57
? 83
Amazing!

Question 2/4: 70 - 53
? 27
Incorrect. The answer 1is

Question 3/4: 73 - 34
?7 39
Exactly!

Question 4/4: 49 + 27
?7 76
Perfect!

Your score is 75/100.

Units of length:
millimeter, centimeter, decimeter,
meter, kilometer

lem = 10 v
1dm = 10 cm
1wmwm=10 dm
1l km = 1000 m
Units of mass:
gram, kilogram, town
1 kg = 1000 g

1t = 1000 kg

Practice Unit Conversion

[unit_conversion.py random

Randomly generate a specified number of
length and mass unit conversion questions.
Since fractions and decimals have not yet
been learned, the questions are all unit
conversions from larger units to smaller
units. For example, questions like 1 dm =
__cmwill appear, but 1cm = dm will not.
Every time a question is answered, the
program will display whether it is correct or
incorrect. In the case of an incorrect
answer, the correct one will be shown. The
total score will be displayed after all
questions are completed (the full score
value can be set, the default is 100 points).

Question 1/4: 1t = _ kg
?7 10
Incorrect. The answer is 1000.

Question 2/4: 1kg = __g
? 1000
Great!

Question 3/4: 1m = __
7 100
Bingo!

Question 4/4: 1dm
? 100
Fabulous!

Your score is 75/100.

Vertical Addition and Subtraction

Vertical addition and subbraction

Checking the results of
addition and subkraction

Estimakion with addition and
subbtraction quesEf.ous

Vertical Addition

[add_vertical py string

This program sums two natural numbers
inputted by the user and displays the result
on the screen in vertical form. The program
realistically simulates the vertical operation
process of addition instead of using the
programming language's built-in "+"
operator to get the result directly. This way,
learners can strengthen their understanding
and mastery of vertical addition through
programming.

Enter the first number: 298
Enter the second number: 745
2 98

Vertical Subtraction

[sub_vertical.py string

This program subtracts two natural
numbers inputted by the user and displays
the result on the screen in vertical form.
The program realistically simulates the
vertical operation process of subtraction
instead of using the programming
language's built-in "-" operator to get the
result directly. This way, learners can
strengthen their understanding and mastery
of vertical subtraction through
programming.

Enter the first number: 435
Enter the second number: 86

Multiplication Word Problems

Problems in the form of

“a times b, a is

how many times b, ete!”

Practice Multiplication Word Problems

(] a_times_b.py random

Randomly generate a specified number of
multiplication word problems. The problems
are of three simple types, examples of each
are as follows:

- What is 3 times 47

- 12 is how many times 47

- 3times a number is 12; what is this
number?

Every time a question is answered, the
program will display whether it is correct or
incorrect. In the case of an incorrect
answer, the correct one will be shown. The
total score will be displayed after all
questions are completed (the full score
value can be set, the default is 100 points).

Question 1/4: What is 5 times 47
7 20
Well done!

Question 2/4: 3 times a number is 6, what is this number?
7 18
Incorrect. The answer is 2.

Question 3/4: What is 3 times 67
7 18

Amazing!

Question 4/4: 56 is how many times 87
oy
Super!

Your score is 75/1@0.

Short Multiplication

Mental multiplication of mulki-digit

numbers by a single-digit number

Vertical multiplication of mulki-digit

numbers b? a single-digit number
Mulkiplying b:j o)

Mu.LEE.FLi.caEi_oh estimation using the

QPFroxLMQEe svmbol,

Tmo-s&ep mu&iptf.ca&iou and

division word probtems

Short Multiplication

] short_multiplication.py string

This program multiplies two natural
numbers inputted by the user and displays
the result on the screen in vertical form.
The program realistically simulates the
vertical operation process of multiplication
instead of using the programming
language's built-in "*" operator to get the
result directly. This way, learners can
strengthen their understanding and mastery
of vertical multiplication through
programming.

Enter the first number: 343
Enter the second number (1-digit): 6

Quadrilaterals (polygons with 4 sides)

Rectangles and squares

Perimeter of rectangles and squares

Perimeter of rectangle = (length + width) x 2

Perimeter of square = edge length x 4

Create Rectangle Class

[rectangle.py class

This program creates the Rectangle class.
After instantiating a rectangle object, you
can access its length and width, calculate
its perimeter, and judge whetheritis a
square. You can also use the print()
function to display relevant information
about the rectangle object.

The program’s logic is not complicated. Its
main purpose is to use simple concepts
such as the length, width, and perimeter
rectangles as an example to help learners
understand the concepts of classes and
objects, as well as to gain a preliminary
understanding of object-oriented
programming (OOP).

>>> rectl = Rectangle(5, 2)
>>> print(rectl)

Rectangle

length: 5

width: 2

perimeter: 14

>>> rect2 = Rectangle(3)
>>> print(rect2)

Square

side: 3

perimeter: 12

>>> rect2.length = 4
>>> print(rect2)
Rectangle

length: 4

width: 3

perimeter: 14

>>>

A Preliminary
Understanding of Fractions

Understanding fractions

Comparing fractions with
the same numerator or
denominator

Adding and subtracting
fractions with
the same denominator

Simple applications of
fractions

Comparing Fractions

[compare_fractions.py random

Randomly generate a specified number of
practice questions on comparing fractions
with the same numerator or denominator.
Every time a question is answered, the
program will display whether it is correct or
incorrect. In the case of an incorrect
answer, the correct one will be shown. The
total score will be displayed after all
questions are completed (the full score
value can be set, the default is 100 points).

Question 1/4: 2/3 __ 1/3
(> or<) ?2 >
Great!

Question 2/4: 5/9 __ 5/6
(> or <) ? <
Excellent!

Question 3/4: 2/4 __ 2/6
(> orn«<) 7 <
Incorrect. The answer is >.

Question 4/4: 3/9 __ 5/9
(> or <) 7?7 <

Good!

Your score is 75/100.

Understanding seks

Intersection of two seks

Union of two sets

Set Operations

[sets.py set, random

The program uses two methods to obtain
the intersection and union of two sets: the
first is to use the list data type to represent
the set, and program the intersection and
union operations according to the definition
(still in the form of list); the second is to use
Python's built-in set data type and
operations to directly obtain the intersection
and union of two sets.

The program has two main purposes.
Firstly, it lets learners realize, through
random examples, that the sum of the
elements of two sets minus the number of
common elements equals the number of all
elements. Secondly, it introduces learners
to the set data type, which is especially
useful for set operations. Unlike lists, sets
don’t contain repeating elements, and their
elements aren’t ordered.

My set operations using list:

A: [6, 4, 1, 2], 4 elements.

B: [8, 6, 7, 1, 5], 5 elements.
Intersection: [6, 1], 2 elements.

Union: [6, 4, 1, 2, 8, 7, 5], 7 elements.
4 + 5 -2 =7

Built-in set operations:

A: {1, 2, 4, 6}, 4 elements.

B: {1, 5, 6, 7, 8}, 5 elements.
Intersection: {1, 6}, 2 elements.

Union: {1, 2, 4, 5, 6, 7, 8}, 7 elements.
4 + 5 -2 =17

Orientations

North, South, £ast, West

Northeast, Northwest

Southeast, Southwest

Practice Identifying Orientations

] orientation.py tkinter, turtle, threads

Randomly generate a specified number of
direction-identifying practice questions. the
program adds a time limit to answering the
guestions in order to add some urgency and
fun. Users can adjust the time limit or
disable it as needed.

When the program is running, learners
answer questions by choosing one of eight
direction buttons (East, West, South, North,
Southeast, Southwest, Northeast, and
Northwest) according to the direction
indicated by the arrow on the screen. If the
answer is correct, the program will continue
to the next question, and if it is wrong, a
message box will pop up displaying the
correct answer. If you do not answer for a
period of time longer than the set time limit,
a message box will automatically pop up,
displaying the correct answer. After all
guestions are completed, the number
answered correctly will be displayed in a
message box, and you will be asked if you
want to try again. Choose “Yes” to start
over, or choose “No” to exit the program.

The timing function of the program uses
tk's after(). Unlike the common sleep()
function, after() will not hinder the running
of the main thread of the program.

Ehea
ke Harthwwasn]

Short Division

Mental division with
single-digit divisor

Vertical division wikh
si.hgte-cii.gi.ﬁ divisor

Division wikth remainder
Checking Aivision resulks

Dividend is ©

Estimating division Probl.ems
wikh sihgi.e-*ciigif: Aivisor

Short Division

[short_division.py string

This program divides a multi-digit natural
number by a one-digit non-zero natural
number (both inputted by the user) and
displays the result on the screen in vertical
form. The program realistically simulates
the vertical operation process of division
instead of using the programming
language's built-in "//" and "%” operators to
get the result directly. This way, learners
can strengthen their understanding and
mastery of vertical division through
programming.

The most complicated part of this program
is displaying vertical division. Unlike vertical
addition and subtraction, which only has
three rows, the number of rows of vertical
division is not fixed, and the starting position
of each row is constantly changing. When
determining the starting position of each
row, the following two factors are
considered:

1. Vertical division contains several steps of
"small" division, and the remainder of each
step will be the highest part of the dividend
in the next step. So, the digit difference
between the dividend and the remainder in
the small division of one step is the
indentation of the dividend in the next.

2. If the remainder of a step of “small”
division is zero, there will be at least one
leading zero in the dividend of the next step.
The leading zeros should be removed when
displaying, but their positions should be
kept as indentations.

Enter a natrual number as the dividend: 2160
Enter a 1-digit non-zero natrual number as the divisor: 2

1080

2/2160
P

16
16

0

2160 / 2 = 1080 ... @

Enter a natrual number as the dividend: 3501
Enter a 1-digit non-zero natrual number as the divisor: 5

700

5/3501
35

1

3501 / 5 =700 ... 1

Tahles

Skakisktical kables

Creating and Displaying Tables

() table.py class, list, string

The program creates a “table” class, which
includes parameters such as row and
column headers, row and column numbers,
and the table’s data (specified or random).
The class also includes methods such as
data clearing and deleting rows or columns.
The program lets learners familiarize
themselves with statistical tables,
understand the creation and use of classes
and objects, and experience object-oriented
programming (OOP, Object-Oriented
Programming).

One of the main functions of the program is
to display a table in the command line
interface. Chinese and Western characters
can be used in the table’s data. The width of
the cell will be automatically adjusted
according to the table’s data, and the row
and column headers and data will be
centered within their cells.

>>> vegetables = ['Tomato', 'Carrot', 'Cucumber', 'Corn'l]

>>> classes = ['Classl', 'Class2', 'Class3']

>>> table = Table(row_headers=classes, col_headers=vegetables)
>>> table.random()

>>> print(table)

i et | e [i |

Tomato Carrot | Cucumber | Corn

| Classl |
e e ||

Class2 | 9 | 8 | |

= = = = o= = |
Class3 | 4 | | 3| 9 |

e e e B |

>>> print(table.shape)
3 x4

>>> table.del_row(1)
>>> table.del_col(2)
>>> print(table)

| Tomato | Carrot | Corn |

| Class3 |

>>> print(table.shape)
2773

=

2-Digit Long Multiplication

Mental multiplication of mulki-digit
numbers with trailing zeros

Vertical multiplication of two
two-digit numbers

Two—sf:ep muLEiFLLcaELOM and division
word Frobl.e.ms

Long Multiplication 1

[long_multiplication1.py string

This program multiplies two natural numbers
inputted by the user and displays the result on
the screen in vertical form. The program
realistically simulates the vertical operation
process of multiplication instead of using the
programming language's built-in "*" operator
to get the result directly.

The operation process of multi-digit vertical
multiplication can be divided into two steps.
The first step is multiplying multi-digit
numbers by one-digit numbers. The second
step is adding the products obtained in the
first step. This program completes the first
step by calling the previously written program
short_multiplication.py (G36).

long_multipy _core(), which simulates the
process of long multiplication, is separated
from long_multiply(), which mainly displays
long multiplication columns, so that
long_multipy core() can be reused in Long
Multiplication 2, which is the final program of
this multiplication series.

the first number: 48
the second number: 37

The concept of area

Area units (em2, dm2, m2?)
Area of rectangle and square

Area of rectangle = length x width

Area of a square = side length x side length

Conversion factors of area uniks

1 square decimeter = 100 square centimeters

1 square meter = 100 square decimeters

Tile laying word problems

Drawing and Analyzing Rectangles

D draw_rectangle.py tkinter, turtle, class, coordinate

This program expands upon the functionality of the
previously written program rectangle.py (G317) by
adding methods for drawing a rectangle and finding
its area. To enhance the intuitiveness of the concept
of area, you can choose to include a square grid
when drawing a rectangle. Each square represents a
unit area, and the number of squares is equal to the
area of the rectangle.

Turtle and Tk are the two most commonly used
tools in Python for programming graphic user
interfaces. Turtle is simple and intuitive - the
drawing process comes with animations, and you
don’t need to know plane coordinates to start using
it; It is suitable for beginners. Tk is richer and has
more powerful functions. It can not only draw
pictures but can also be used to write application
software under a graphical user interface. This
program creates two methods, using Turtle and Tk,
respectively, to draw rectangles. This allows learners
to experience the functionalities of both tools,
helping inform their choices when programming
graphical interfaces in the future.

This program requires learners to have some basic
understanding of coordinates. It should be noted
that Turtle's coordinate origin (0, 0) is at the center
of the screen (similar to Scratch), whereas Tk's
coordinate origin (0, 0) is at the upper left corner
(where down is the positive direction). Furthermore,
because "width" and "height" are generally used to
represent the horizontal and vertical dimensions of
computer screens, the previous “length” and “width”
attributes of the rectangle class have been changed
to “width” and “height”.

>>> rect = Rectangle(30)
>>> print(rect)

Square

side: 10

perimeter: 40

area: 100

>>> rect.width = 40
>>> print(rect)
Rectangle

width: 15

height: 10
perimeter: 50

area: 150

>>> rect.draw(fill="'1lightblue', grid=True)

Years, Months, and Days

qujs per monkh
Lea[a Yyears
294--hour Eimekeepihg

Time tnkervals

Display Calendar

] calendar.py string

The user enters the year and month, and the
program displays the calendar for that month
on the screen.

Enter a year (1-9999): 2000
Enter a month (1-12): 2

S M T W T F S
1 2 3 4 5

6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29

Understanding decimals
Relationship bebween decimals

and fractions

Simple addition and subbraction

of decimals

Decimal Practice 1

[decimal_practicel.py random

Randomly generate a specified number of
decimal practice questions. Every time a
guestion is answered, the program will display
whether it is correct or incorrect. In the case of
an incorrect answer, the correct one will be
shown. The total score will be displayed after all
questions are completed (the full score value
can be set; the default is 100 points). There are
four types of questions - users can practice one
type at a time or mix questions from multiple
types. The four question types are as follows:

1. Converting fractions to decimals: The
denominators of the fractions can be 10, 100, or
1000, with larger denominators being less likely
to appear.

2. Converting decimals to fractions: Decimals are
between 0 and 1 with 1-3 decimal places, with a
lower likelihood for a larger number of decimal
places. Since simplification of fractions has yet to
be covered, there is no need to reduce them to
the simplest form. As long as the fraction and the
decimal are equal in value, the answer is
considered correct. For example, converting 0.8
to 8/10 is acceptable.

3. Two-way unit conversions: Previously, in
“Practice Unit Conversion” (G313), the focus
was on converting from larger units to smaller
units. In this program, two-way unit conversion
questions are included, allowing you to input
decimals or fractions when converting from
smaller units to larger units. For example, "1 cm
=0.01 m"or "1 cm = 1/100 m." In addition to
length and mass units, this program extends unit
conversion to include currency units and area
units.

4. Simple decimal addition and subtraction:
These are one-digit decimal addition and
subtraction questions within the range of 0 to 10.
The operands may include integers to practice
mixed operations with integers and decimals.

Through these exercises, you can gain a deeper
understanding of the relationship between
fractions and decimals and strengthen your
comprehension of decimals as you transition
from integer arithmetic to decimal arithmetic.

Question 1/4: 3/10
Decimal? 0.3
Impressive!

Question 2/4: 0.48
Fraction? 48/100
Awesome!

Question 3/4: 8 - 3.9 =
7 4.1
Incredible!

Question 4/4: 1cm? = __dm?
7 0.1
Incorrect. The answer is 0.01 or 1/100.

Your score is 75/100.

Visualization of Decimals

[decimal_representation.py ¢ tkinter, coordinate

The user inputs a decimal or fraction between 0
and 1, and the program colors the portion of a
square corresponding to this number. This
visually intuitive representation helps to deepen
the understanding of decimals and their
connection to fractions.

Enter a decimal or fraction between © and 1: 0.75

A B C L

Counkt g pr E.uci.PLe

Choose one from each group

Select several from a group in order

Select several from a group without order

Three Common Counting Problems

(] combination.py itertools, nested loop

This program provides solutions to three common
counting problems using nested loops. The three

types of counting problems are:

1. Cartesian Product: Select one item each from
two groups. Examples include pairing tops with
pants or selecting a main course and a side dish.
2. Permutation: Select and arrange two items from
a group (order matters). In this case, choosing A
first and B second is different from choosing B
first and A second.

3. Combination: Select two items from a group
(order doesn't matter). In this case, choosing A
first and B second is the same as choosing B first

and A second

In each of these counting problems, listing all
combinations without repetition is essential. This
IS where computer programs excel, as they can
mechanically generate all scenarios using nested
loops. The program also displays all combinations
In an organized manner, making it easier for

learners to identify patterns.

The program uses three slightly different types of
nested loops to solve the above three types of
problems. Selecting m items will use m nested
loops, so when m is large, nested loops are not a
good solution, and recursion is often used instead.
However, when m is small, nested loops are the
Implementation that can best help learners

understand counting problems.

Python's standard library provides the itertools
module, which contains multiple functions that
can be used directly to solve counting problems.
The program compares the results of self-written
functions to corresponding itertools functions,

showing that they are the same.

Cartesian Product

A_: Aa Ab Ac Ad
B_.: Ba Bb Bc Bd
C: Ca Cb Cc Cd

D: Da Db Dc Dd
There are 16 ways to select 1 item each from groupl (4 items) and group2 (4 items).

Permutation
A : AB AC
: BA BC
.t CA B C
D: DA DB
There are 12 ways to select 2 items from groupl (4 items) when order matters.

Combination

A_: AB AC AD

B_: BC BD

cC: €D

D_:

There are 6 ways to select 2 items from groupl (4 items) when order doesn't matter.

>>> print(my_product_result == list(itertools.product(GROUP1, GROUPZ)))
True

>>> print(my_permutation_result == list(itertools.permutations(GROUP1, 2)))
True

>>> print(my_combination_result == list(itertools.combinations(GROUP1, 2)))
True

===

G411

Working with Large Numbers

12756274 m

Magnitudes

(Fhousands, milliowns, billions)

Unik conversions

Reading and writing large numbers

Comparing large numbers
Rouhdiug to bhe nearest whole number
Nakural numbers

Using a calculator

Read Out Any Natural Number

(] read _number.py string

The user can input any natural number less
than 10 to the power of 48, and the program
will display the number, read out in words.

Enter a natural number: 1234567
one million two hundred thirty four thousand five hundred sixty seven

Enter a natural number: 1,000,000,000,000
one trillion

6412

Large area units: are (a), hectare

(ha), and square kilometer (lemn2)

1 square kilometer = 100 hectare

1 hectare = 100 are

Practice Area Unit Conversion

(] area_unit_conversion.py random

Randomly generate a specified number of
area unit conversion questions. Every time a
question is answered, the program will
display whether it is correct or incorrect. In
the case of an incorrect answer, the correct
one will be shown. The total score will be
displayed after all questions are completed
(the full score value can be set; the default is
100 points).

"Four Types of Decimal Practice

Problems" (G327) includes a function that
generates two-way unit conversion
questions. This program expands on this
function by adding the area units ares,
hectares, and square kilometers to the pool
of possible units for unit conversion
questions. When converting from a smaller
unit to a larger unit, you can enter either
decimals or fractions (1 cm2 = 0.0001 m2 =
1/10000 m?2). For answers that contain many
digits, scientific notation can be used. For
example, 1e3 represents 1 followed by three
zeros, which is 1000; 1e-3 represents 1/
(1e3), which is 1/1000 or 0.001.

Question 1/4: 1m?2 = __ha
?7 0.01
Incorrect. The answer is 0.0001 or 1/10000.

Question 2/4: 1cm?
7?7 1/100
Awesome!

Question 3/4: 1km? =
? leb
Great!

Question 4/4: 1la =
? le-4
Fantastic!

Your score is 75/100.

G413

Line segment, Line, ray
Angle, vertex, side

Right angle, straight angle, full

angle (acute and obtuse angles

were aLreo\dtj covered in the

second grade)

Measuring and drawing angles

using a prof:rackor

Draw Clock Dial

[draw_clock_dial.py turtle, tkinter, threads

The program draws a clock dial using angles and
lines. It has and has two main differences from
the program "Analog Clock" (G311):

1. G311 uses a background image as its clock
dial, whereas this program uses the Turtle module
to draw the clock dial.

2. G311 uses the time module's sleep() for timing,
whereas this program uses tk's after(). Unlike
sleep(), after() does not block the main program
thread.

After running the program, you can exit by
pressing any key or by clicking inside the window.
By adjusting parameters, you can also accelerate
the movement of the clock hands or disable the
animation for drawing the clock face.

Press any key or click the mouse to exit...

6414

3-Digit Long Multiplication

3-digit by 2-digit long mulkiplication

Long mulkiplication with factors ending

i ©

Patterns in the product as factors

ckahge
Unik Frice X qu&h&ikj = total Fri,z:e.

SFeed x kime = distance

Long Multiplication 2

[long_multiplication2.py string

This program multiplies two natural numbers
inputted by the user and displays the result on
the screen in vertical form. The program
realistically simulates the vertical operation
process of multiplication instead of using the
programming language's built-in "*" operator to
get the result directly.

The program is an upgrade of "Long
Multiplication 1" (G324) with special handling
of trailing zeros of the two numbers. Since the
core operations of long multiplication are the
same, long_multiply core() is reused to
multiply the main parts of the two numbers
after separating their trailing zeros.

This program is the final version of the series of
multiplication programs (G316, G324, G414).

Enter the first number: 5890
Enter the second number: 6500

38285000

G415

Parallelograms and Trapezoids

Parallel Lines
Per Pehdicula\r Lines

Drawing perpendicular lines and

rectangles

Distance from a point to a Lline

Parallelograms (base, height)

Trapezoids (top base, bottom base, legs,
height)

Isosceles trapezoids and right

tra Pez.oi_ds

Counting Trapezoids

(] count_trapezoids.py

random, nested loop, tkinter, coordinate

The program randomly generates a specified
number of line segments between two parallel
lines, ensuring that none of the line segments
are parallel. A trapezoid can be constructed
using the two parallel lines as the top and
bottom bases and any two non-intersecting
line segments as the legs.

The program starts by asking the user to
specify how many line segments to generate.
It also asks whether these line segments can
intersect. If the user doesn't confirm this, the
program assumes that all line segments are
non-intersecting. The user then examines the
randomly generated lines to count how many
trapezoids are present. After providing an
answer, the program will display whether it is
correct or incorrect. In the case of an incorrect
answer, the correct one will be shown.

When counting trapezoids, you can follow
these steps to ensure accuracy:

- Take one line segment at atime in a
particular order and consider it as one of the
trapezoid's legs.

- Count all the line segments that do not
intersect with this chosen leg as the other leg -
each pair of legs is a trapezoid. Look for the
second leg in one direction to avoid counting
the same pair of legs more than once.

This approach of counting trapezoids is
essentially the same as solving a combination
problem, so the program uses two nested
loops similar to "Three Common Counting
Problems" (G328).

Number of generated line segments (2 < n < 10): 4
Are intersections allowed? (y/n) n

How many trapezoids? 6
Correct!

Counting Trapezoids

NN

Number of generated line segments (2 < n < 10): 4
Are intersections allowed? (y/n) y

How many trapezoids? 3
Incorrect. The answer is 4.

Counting Trapezoids

G416

Long Division

Menkal division and eskimakion

with 2-digit divisors

Long division with 2-digit

divisors

Pakterns in the quo&iab«fz

Long division with dividends

and divisors with trailing zeros

Long Division
[long_division.py string

This program divides two natural numbers (the
divisor must not be zero) inputted by the user
and displays the result on the screen in vertical
form. The program realistically simulates the
vertical operation process of division instead of
using the programming language's built-in “//"
and "%" operators to get the result directly.

The basic operations of short division and long
division are the same. Therefore, “Short
Division” (G322) can be used for long division
when the restriction of the divisor's number of
digits is removed. Based on “Short Division”,
this program adds the additional step to cancel
the dividend and divisor's common trailing
zeros. When both the dividend and divisor end
in zeros, you can simplify the calculation by
removing the same number of trailing zeros
from both (if there's a remainder, add the same
number of zeros to the end of the remainder).

This program is the final version of the series of
division programs (G322, G416).

Enter a natrual number as the dividend: 5480
Enter a non-zero natrual number as the divisor: 360

15

36/548
36

188
180

8

5480 / 360 = 15 ...

G417

¥V RBar charts

Choosing appropria&e

scales for bar charts

Creating Bar Charts Using Matplotlib

() bar_chartpy o= matplotlib

This program uses the popular Python plotting
library Matplotlib to create vertical and horizontal
bar charts. In Matplotlib, all the plots within a
single window are referred to as a Figure, and a
Figure can contain one or more plots, with each
plot known as an Axes. Matplotlib has two coding
styles:

- Object-oriented (OO) style: Explicitly create
Figures and Axes and call their methods for
plotting.

- Pyplot style: Implicitly create and manage
Figures and Axes using pyplot and use pyplot's
functions for plotting.

Matplotlib generally suggests using the object-
oriented style, particularly for complicated plots.
However, pyplot can be very convenient for quick
Interactive work. For comparison, this program
uses Matplotlib to draw bar charts in two Figures,
using one coding style for each. Each Figure
contains two Axes arranged horizontally: one for
the vertical bar chart and the other for the
horizontal bar chart.

Creating Subclass of Table Class
to Draw Bar Charts

(1 datal.py o= matplotlib, class

This program is based on the previous program,
"Creating and Displaying Tables" (G323), and
introduces a subclass called Data. The Data
class inherits the properties and methods of the
Table class and adds two new methods, bar()
and barh(), for drawing vertical and horizontal
bar charts. This means that the data in the Data
class can be displayed as a table in the
command line interface and as bar charts in a
graphical interface. In future programs, more
methods for drawing grouped bar charts and line
charts will be added to the Data class.

Figure 1

Number of Students Who Like Certain Vegetables

No. of Likes
- - = %]
=1 w - w ¥} e} = g
I L 1 L h L
g
|
o
o
(2]
o
g
H
D
=]
o
o]
g
.
[=]
3

rrrrrrr

#€r+Q=n

6418

Overall Ftanhing

and apﬁimizaﬁon

Winning sEraEegfj

Counting Game

(] counting_game.py random

Here are the rules of the Counting Game: Two
players take turns counting. Each turn, they
choose a number within a given range and add
it to the shared counter. Whoever makes the
counter reach the target number will win. This
program simulates this game with a player and
computer. The player counts first.

There is a winning strategy to this game. Take
the addition range 1 to 3 and the target number
271 - to make the counter reach 21, you first
need to make the counter 17 because no
matter if the opponent chooses +1, +2, or +3,
you can add to 21 on your next turn. Similarly, if
you want to make the counter 17, you have to
make the counter 13, and so on. Using this
method, you will have a list of "winning
numbers:" (21,17, 13,9,5,1).So,as long as O is
not a winning number, the player who counts
first can count the first winning number, leading
to guaranteed victory. The program also uses
this strategy. So, If the player makes a mistake,
the computer will make the counter a winning
number and eventually win the game.

Each turn, you can choose a number from [1, 2] to add to the shared counter.
Whoever makes the counter reach exactly 10 wins.

Current counter: @ —> Target number: 10
Your turn: 1

Current counter: 1 —> Target number: 18
Computer's turn: 2

Current counter: 3 —> Target number: 18
Your turn: 2

Current counter: 5 — Target number: 18
Computer's turn: 2

Current counter: 7 —> Target number: 18
Your turn: 1

Current counter: 8 —> Target number: 18
Computer's turn: 2

Current counter: 10 = Target number: 10
Computer wins!

G421

Addition
Sum = Addend + Addend

Addend = Sum - Other Addend

Subbraction
Difference = Minuend - Subtrahend

Subtrahend = Minuend - Difference

Minuend = Subtrahend + Difference

Mu-LELFLLCaELon
Product = Factor x Factor

Factor = Product = Other Factor

Division
Quotient = Dividend = Divisor
Divisor = Dividend = Quotient

Dividend = Quotient x Divisor

Mixed Arithmetic Operal’:ions,
Parentheses (), [], |}

Order of Operations in Mixed
Opemhiov\s with Parentheses

Evaluate Arithmetic Expressions

(] eval expressions.py string

The program takes user input of any arithmetic
expression in text form and displays the
calculation result on the screen.

The program can parse arithmetic expressions
containing addition, subtraction, multiplication,
division, and parentheses. The algorithm used
simulates the steps people take when performing
calculations:

1. Scan the expression string to get operands and
operators, and set the precedence level for each
operator according to the order of operations
learned in this unit.

2. Then, in order of precedence, and from left to
right in cases of equal precedence, calculate each
part until the final result is obtained.

The program doesn't use stack or recursion
algorithms for evaluating expressions. Instead, it
simulates our actual calculation process, which is
less efficient but more understandable.

Characters in the expression other than digits and
'+-*/()" are ignored. Nested parentheses all use /().

Enter an arithmetic expression:
96/ ((12+4)%2)
3

Enter an arithmetic expression:
96 / ((1 2+ 4)%x2)
3

6422

B View from the top: top view

View from the left: left view

Three Views of Cubes

(] cubes_3view.py

tkinter, coordinate, 2d list, random, class

The program randomly generates and draws an
object made of cubes. Press the spacebar to
display the three views of the object at the bottom
of the window. From left to right, they are the left
view, front view, and top view. Press the spacebar
again to generate a new object.

The spatial position (column, row, layer) of each
cube is stored in a list, and all cubes are contained
in the object. So, the object is represented by a
two-dimensional list.

What is drawn on the canvas will cover the
previous drawings in the same position. So, the
cubes only need to be drawn from left to right,
back to front, and bottom to top to achieve an
occlusion effect.

The object is flattened to a view by ignoring one
of the three dimensions of the object. For
example, a top view can be drawn by ignoring the
layer dimension (z coordinate).

6423

Commutative Law of addition
a+bh=b+a

Associative Llaw of addition
@+b+c=a+(b+c

Cownsecutive subbtraction

a-b-c=a-(h+¢o

Commutative law of mulkiplication

axh=hxc

Associative Llaw of muLELFLit:a&i.on
(axh)xc=ax(bxc)

Disktributive law of multiplication
@+h)xc=axc+hxc

ax(b+c)=axh+axc

Consecutbtive division

a~h=-c=a=(bxc

Solve 24

solve_24.py itertools, nested loops, dictionary, algorithm

The 24 Game is played with a deck of playing
cards with all the face cards removed. Randomly
draw four cards, and the first player that uses all
values on the cards, elementary arithmetic
operations (+, -, *, /), and parentheses to come up
with 24 wins. There are also some variants of this
game, such as using J, Q, and K or allowing more
operations.

Given four numbers, the program will display all
solutions that are not equivalent. Here are some
specific explanations:

- The program uses brute force to try every
arithmetic expression and uses the calc() function
in eval_expressions.py (G421) to calculate the
result of the expressions.

- Many solutions, such as ones using commutative
or associative laws, are equivalent. To check
whether two expressions are equivalent, the four
given numbers are mapped onto another four
random numbers, and these new numbers replace
the operands in the two expressions. If the results
of the two expressions are still the same, they are
equivalent.

- When displaying solutions, parentheses are only
used when they are required.

- The programs can be used to solve problems
similar to the 24 Game. In fact, users can enter
any amount of numbers and any target number
(not necessarily 24) and get all non-equivalent
solutions.

>>> solve(7, 8, 5, 4)

>>> solve(7, 8, 5, 4, target=40)

(8 +7 -5) x4
(7 +5) x4 -8

>>>

6424

Meaning and Properties
of Decimals

The meaning of decimals

Decimal counting units
One-tenth (written as 0.1)

One-hundredth (written as 0.01)
One-thousandth (written as 0.001)

Reading and writing decimals
Simplifying decimals
Comparinc_, decimals

Shifting the decimal point
Moving one place to the right is equivalent to
multiplying by 10.
Moving one place to the left is equivalent to dividing
by 10.

Properties of decimals: Adding or

removing krailing "o"s from a

decimal does not change its value,

AFF‘I‘OXLM&ELMCJ decimals
Rounding

When representing an approximation, the trailing “0"s

in a decimal should not be removed.

Decimal Practice 2

(] decimal_practice2.py random, decimal

Randomly generate a specified number of decimal
practice questions. Every time a question is
answered, the program will display whether it is
correct or incorrect. In the case of an incorrect
answer, the correct one will be shown. The total
score will be displayed after all questions are
completed (the full score value can be set; the
default is 100 points). There are three types of
guestions - users can practice one type at a time
or mix questions from multiple types. The three
question types are as follows:

1. Approximating Decimals: The program
presents a random decimal number and
generates instructions on how many decimal
places to retain or up to which place to be precise.
2. Decimal Point Shifting Exercises: The program
presents a random decimal number, and you will
practice moving the decimal point to the right or
left by calculating the product or quotient when
multiplying or dividing the decimal by 10, 100, or
1000.

3. Two-way unit conversion from "Decimal
Practice 1" (G327). For unit conversions that
involve shifting the decimal point significantly to
the left, third-grade students may have used
fractions for answers. This unit provides an
opportunity to practice using decimals for
answers. The answers provided by the program
may sometimes appear as "1e-06" (equivalent to
"1e-6"), which is scientific notation representing
moving the decimal point of 1.0 to the left by 6
places, i.e., 0.000001. Similarly, "1e6" is moving
the decimal point of 1.0 to the right by 6 places,
l.e., 71000000.

The default data type for representing decimals in
Python is float. Float operation is very efficient,
but there are often errors, e.g., 1.1+ 2.2 =
3.3000000000000003. There is a data type,
Decimal, in the decimal module of the Python
standard library that is specially used to represent
decimals. Although the efficiency is not as good
as float, it can obtain accurate results of decimal
operations. The Decimal data type is used in the
program to calculate correct answers for
questions of rounding decimals and moving
decimal points.

Question 1/4: 19.971 rounded to the nearest tenth
? 20
Incorrect. The answer is 20.0.

Question 2/4: 84.68 / 1000 =
?7 0.08468
Well done!

Question 3/4: 98.4758 rounded to 2 decimal places
7 98.48
Excellent!

Question 4/4:
? 0.000001
Perfect!

Your score is 75/100.

6425

Triangles

Three sides, angles, vertices

Height and base of a triangle

Sf:cxbi.[i.&:-j of kriangles

The shortest Line se_gme_ni: among all Lines
bebtween kwo PoihEs is the distance bebween

those btwo FOI'.VLES.

The sum of any two sides of a triangle is

greater thawn the third side,

Classification of triangles
Based on angles: acute triangle, obtuse triangle, right triangle.

Based on sides: isosceles triangle, equilateral triangle.

The pattern for the sum of interior angles

of polygons
The sum of the interior angles of a triangle is 180°.

The sum of the interior angles of a quadrilateral is 360°.

Draw Isosceles Triangles

(] isosceles_triangle.py turtle

Given the vertex angle and length of the legs,
the program draws the isosceles triangle and
displays its base angle and base length.
Without using trigonometric functions, the
length of the base is obtained by using turtle's
distance() method to return the distance
between its two endpoints.

Enter the vertex angle: 90
Enter the length of legs (0 - 500): 500

Vertex Angle: 90 Base Angle: 45 Legs: 500 Base: 707

Draw Regular Polygons

() regular_polygon.py turtle

This unit extends the study from triangles to
polygons. The second program is about
drawing regular polygons (given the distance
from the center to a vertex). The program uses
two methods:

1. As long as you know the side lengths, you
can use turtle to go around and draw a regular
polygon. First, find the two adjacent vertices of
the regular polygon, and then use turtle's
distance() method to return their distance,
which is the side length of the regular polygon.
2. Use two turtles. The first turtle finds vertices
in order, while the second turtle follows from
the previous vertex and draws an edge. When
the first turtle goes around and finds all the
vertices, the second turtle completes the
regular polygon.

e

6426

Addition and Subtraction
of Decimals

Decimal addition and subbraction
i vertical form

(aligning the decimal points)

Simplifying calculations using

Llaws of addition

Addition and Subtraction of Decimals
in Vertical Form

(] add sub_decimals.py string

This program sums or subtracts two decimals
or integers inputted by the user and displays
the result on the screen in vertical form. The
program realistically simulates the vertical
operation process of addition instead of using
the programming language's built-in "+"
operator to get the result directly.

The addition and subtraction of decimals with
the decimal points aligned are almost the same
as the addition and subtraction of integers. So,
the program simulates the calculation process
of decimals based on reorganized elements of
“Vertical Addition” (G314) and “Vertical
Subtraction” (G314).

1. Add zeros to the end of the decimal with
fewer decimal places to make both decimals
have the same number of decimal places -
making their decimal points aligned.

2. Remove decimal points of operands and do
integer addition or subtraction (same as in the
programs of G314).

3. Add a decimal point to the result at the same
position as operands' decimal points.

4. Remove operands' trailing zeros added at
step 1, except those of the minuend.

5. Display the vertical columns (same as in the
programs of G314).

6. Remove trailing zeros of the result and
display the simplified result.

Enter the first decimal: 23.5
Enter the second decimal: 4.85
Choose between addition and subtraction (+ or =)? +

23 .5
+ 4.85

28 .35

The simplified result is: 28.35

Enter the first decimal: 1
Enter the second decimal: 0.01
Choose between addition and subtraction (+ or =)? -

1.00
-0.01

9.99

The simplified result is: 0.99

Enter the first decimal: 0.99
Enter the second decimal: 0.01
Choose between addition and subtraction (+ or =)? +

.99
+0 .01

1.00

The simplified result is: 1

G427

Reflective symmetry
Trawnslation

Calculating area using
Eranslakion

Generate Reflective Symmetric Shapes

[reflective_symmetry.py . random, turtle

The program randomly generates a left-right
reflective symmetric shape with the axis of
symmetry placed in the middle of the window. On
one side of the axis of symmetry, the program
generates a random number of points based on
user input and mirrors these points to the other
side of the axis of symmetry. Connecting all these
points forms a reflective symmetric shape.

Generate how many points on one side (1-50)7? 20

Python Turtle Graphics

6428

Meawn value

G—rc}uped bar charks

Mean Value and Grouped Bar Charts

(] datal.py matplotlib, class, 2d list

The program improves the Data class in “Creating
Subclass of Table Class to Draw Bar Charts ”
(G417). bar() and barh() methods of the Data class
can now draw vertical and horizontal grouped bar
charts using data from more than one row. The
methods avg row() and avg_col() are also added
to the Data class. They calculate the average
(mean value) of a given row or column.

| | Tomato | Carrot | Cucumber | Corn |

| Classl | 8 | 10 | 3 | 19 |

| Class2 | 9 | 11 1 1 | 11 |

| Class3 | 18 | 10 | 2 | 6 |

The average of each row is: [10, 8, 9]
The average of each column is: [12, 10, 2, 12]

ane Figure 1

Number of Students Whe Like Certain Vegetables

15 18 8 Class?

164

14

12 1

=
=]

No. of Likes
=
i
=Y

a) & -3 @

Tomate C:II"I'CE Cucumber Com
Vegetables

A€EIPQE=B

@ [Figure 1

bl ot e ted L

#®l 18

B

#e€PI+Q =0

6429

Solving the chicken and

rabbik Frobtem
List method
Assumption method

Lifting legs method

Chicken and Rabbit Problem

[chicken_rabbit.py tkinter, random

The “Chicken and Rabbit Problem” is a famous
ancient Chinese math problem from around
1,500 years ago. It involves a cage with a certain
number of chickens and rabbits. By counting the
number of heads and the number of legs, you
need to determine how many chickens and
rabbits are in the cage (rabbits have four legs,
whereas chickens have two).

This program generates a random variation of
the problem. After the user inputs an answer, it
provides feedback on whether it is correct or
incorrect and displays the correct answer. The
program also displays images of chickens and
rabbits in the window, showing the correct
number of each, providing an intuitive way to
understand the problem.

There are 4 heads and 12 legs.
How many chickens? 2

How many rabbits? 2
Correct! There are 2 chickens and 2 rabbits.

Chickens and Rabbits in the Same Cage

kb “ =
) N
2 = (B 42

Decimal Llong mulﬁiptica&ton
Product approximaﬁon

SLmFi.L*ijv\g] calculabion using

the laws of multiplication

Estimation

Long Multiplication of Decimals

() multiply_decimals.py string

This program multiplies two decimals (or integers)
iInputted by the user and displays the result. The
program realistically simulates the vertical
operation process of multiplication instead of
using the programming language's built-in "**"
operator to get the result directly. The process of
decimal multiplication is as follows:

1. Ignore the decimal points of the two factors and
calculate the product of corresponding integers by
long multiplication.

2. Add a decimal point to the product according to
the factors' number of decimal places.

3. If the product doesn't have enough digits for
decimal places, add leading zeros.

4. Remove trailing zeros of the product if any exist.

When implementing the first step of integer
multiplication in vertical format, the program calls
the long_multiply core() function from "Long
Multiplication 1" (G324) to obtain the calculation
result.

The focus of this unit is on understanding and
mastering the process of decimal multiplication.
Since displaying decimal multiplication in vertical
format involves various considerations at the
display level, the program only provides the result
of decimal multiplication. Interested learners can
challenge themselves to display the vertical form
of decimal multiplication.

Enter the first decimal: 5.5
Enter the second decimal: 6
5.5 x 6 = 33

Enter the first decimal: 0.55
Enter the second decimal: 0.6
.55 x 0.6 = 0.33

@
4,
=y
N

N 1 B

’ A

(A HAHZE

1Y BN w s By A
T R

erresemﬁib\gj F'osi,?:i,ov\

using co ordinates

Input Coordinates Based on Positions

() input_coordinate.py tkinter, random

In this game, a rocket is randomly placed in a
position, and the player's task is to input the
coordinates of the rocket's location and launch a
missile to shoot it down. If the specified number
of rockets is shot down within the set time limit,
the mission is successful. The time limit and the
number of rockets can be adjusted within the
program.

You can use the mouse or TAB key to change
focus when inputting and submitting coordinates,
but the fastest way is pressing RETURN in
entry xto change focus to entry_y and pressing
RETURN again to submit.

Coordinate Game

15 15

Click on Positions Based on Coordinates

[click_position.py tkinter, random

In this game, a specified number of coordinates
are generated randomly, and the player needs
to click on the corresponding positions with the
mouse. If the correct position is clicked, a green
circle is shown; if the wrong position is clicked,
a red circle is shown. If the player correctly
identifies all coordinates within the set time
limit, the mission is successful. The time limit
and the number of coordinates generated can
be adjusted within the program.

1" 5/5

0 1 2 3 4 & & 4 8 9

o
4,
)
O

Decimal division where bthe
divisor is an inkeger

Decimal division where the
dAivisor is a decimal

Quotient approxim ation
Re Fead: ing decimals

Rounding up and dowi

Long Division of Decimals

(] divide_decimals.py string, decimal

The program will, using long division, calculate
the quotient of two decimals (or integers) entered
by the user. If the quotient is a finite decimal, the
program divides until there is no remainder,
providing the exact value of the quotient. If the
quotient is an infinitely repeating decimal, the
program continues to divide until it finds the
repeating pattern and represents the quotient in
a format that contains the repeating part within
parentheses. The program realistically simulates
the vertical operation process of division instead
of using the programming language's built-in "/"
operator to get the result directly.

The steps in decimal division are as follows:

1. Convert the divisor to an integer and adjust the
decimal point position of the dividend
accordingly.

2. Do long division with the quotient's decimal
point aligned with the dividend's.

3. The long division process won't end until the
quotient of a finite decimal or the repeating part
of a repeating decimal is obtained. Zeros will be
added to the end of the dividend if necessary.

The focus of this unit is on understanding and
mastering the process of decimal division. Since
displaying decimal division in vertical format
involves various considerations at the display
level, the program only provides the result of
decimal division. Interested learners can
challenge themselves to display the vertical form
of decimal division.

Enter the dividend: 7.86

Enter the non-zero divisor: 1.3
The quotient is: 6.0(461538)

Practice Converting Common Fractions
to Decimals

() fraction_to_decimal.py random

Randomly generate a specified number of practice
questions for converting common fractions with
denominators less than to decimals. Every time a
question is answered, the program will display
whether the answer is correct or incorrect. The
correct answer will be given in the case of an
incorrect answer. The total score will be displayed
after all questions are completed. (The full score
value can be set, the default is 100 points).

Converting fractions to decimals is as simple as
dividing the numerator by the denominator. The
main goal of these exercises is to help learners
become familiar with the decimal equivalents of
common fractions. For fractions equating to
repeating decimals, the decimals are rounded to
three decimal places.

Convert Fractions to Decimals.
(For repeating decimals, round to 3 decimal places.)

Question 1/4: 3/4
Decimal? ©.75
Splendid!

Question 2/4: 1/5
Decimal? 0.5
Incorrect. The answer is 0.2.

Question 3/4: 2/9
Decimal? @.222
Super!

Question 4/4: 1/6
Decimal? @.167
Wonderful!

6514

Possible, impossible, certain

More or less Frobable

Random Selection with Weights

;%'dom_with_weights.py random, dictionary, matplotlib
When choosing within a given range using random
functions such as random(), randint(), choice(), etc.,
all options are equally likely. But what if we want
options to have different likelihoods of being
selected? The program uses 4 methods to
implement random selection with different weights.
ltems with greater weights are more likely to be
selected.

The program conducts 10,000 random trials for
each method, stores the statistical data in a
dictionary, and visualizes the results as a bar chart
using Matplotlib. The bar chart illustrates that the
number of times each option is randomly selected
aligns with its probability (weight).

Number of Times *
- - . ra
I o n o] ®
o |5 8 8 8 8
w
» '
e
=
@
H_:
o =
=
@
Number of Times
e M M W W &
L2 8 ¥4 8 & 8 & B .
& &8 & & & © © =@©
M|
a|
t)
_m
.
w
2
&
=)
2
_3 2
b n
5 -4
=]
= o
ES 2
4 s
- g

ltems
Items

Sum of Two Dice Rolls

() two_dice.py random, dictionary, matplotlib

The sum of two dice rolls can be any value between
2 and 12, but the likelihood of each outcome is
different. The program simulates rolling two dice
36,000 times, stores the statistical data in a
dictionary, and creates a bar chart using Matplotlib
to visualize the different possible sums. It can be
seen from the bar chart that 7 is the most likely
outcome, occurring about 6,000 times. Conversely,
2 and 12 are the least likely, occurring about 1,000
times each.

L L Figure 1

Sum of Two Dice
6034

6000 -

5000 A 4906 4950

4032 4060

=
=)
(=]
=1

3018 3043

Number of Times
w
o
(=]
o

2000 e 280

990 999

1000

D_

A€EI>PQ=ND

lebbers

Expressions con&aining lebbers

E.'quad:i.ov\s cov\l:ai.ni_hg unknowns

Properties of equations
1. Adding or subtracting the same number on both

sides of an equation keeps hoth sides equal.

2. Multiplying or dividing both sides of an equation by
the same non-zero number keeps both sides equal.

Solving e_qu,ak Lons

Solving equations for real-world
problems

Solving Chicken and Rabbit Problem
Using Equations

(] chicken_rabbit_equation.py string

This program guides users through all the steps
of solving an applied problem using equations.
It displays the steps, including identifying,
formulating, solving, and answering. When
entering the number of heads and feet, the
number of feet must be even and between two
and four times the number of heads. If the input
IS unreasonable, the program prompts for
reentry.

How many heads? 36
How many legs? 126

If there are x rabbits, then there are 36 - x chickens.

4x + 2-(36 - x) = 126
4x + 2-36 - 2x = 126
4x - 2x 126 - 72
2X = 54
x =54 / 2
) G |

Number of chickens: 36 — 27 = 9

So, there are 9 chickens and 27 rabbits.

Area of a parallelogram = base x height

S = th

Area of a briangle = base x height + 2
S =ah <+ 2

Area of a trapezoid = (upper base +

lower base) x height + 2
S=(a+bh-+2
Area of composite figures

Estimating the area of irregular shapes

Polygon Classes with Area Properties

[polygon_classes.py class

This program defines classes for parallelograms,
triangles, and trapezoids. Each class has a
property "area". The value of area is determined
by other attributes such as base and height. If
other attributes change, area will also change
accordingly. The area attribute cannot be directly
modified - such special attributes are called
"properties” in Python. When a property is defined
Inside a class, the "@property" decorator is added
before a function of the same name. Properties
are accessed the same way as other attributes,
but accessing a property is actually invoking a
function internally. So, more can be done when
accessing properties compared to attributes.

>>> parallelogram = Parallelogram(4, 3)
>>> print(parallelogram.area)
12
>
>>> parallelogram.area = 10
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: can't set attribute 'area’
>>>

>>> parallelogram.base = 5
>>> print(parallelogram)
Parallelogram

base: 5

height: 3

area: 15

>

6517

Tree Planting Prohlem

Relationship between the number of trees
and the number of spaces between them

Straight path (open figure)

Circular path (closed figure)

Tree Planting Problem

[plant_trees.py turtle

In this program, the user enters the number of
trees to plant and selects whether they want to
plant the trees on a straight path (an open
figure) or on a circular path (a closed figure).
Based on the user's input, the program uses
Turtle to draw the path and trees. It also
displays the number of trees and the number of
spaces between them.

Number of trees (2-20): 8
Is the road a closed shape (y/n)? n

Bythan Turtls Gragphics

6521

Ohserving Ohjects 2

‘Deduciﬂg the Po-ssi_b le

placement of geometry

from three views

Three Views of Cubes v2

() cubes_3view v2.py

tkinter, coordinate, 2d list, random, class

The program randomly generates an object
made of cubes and then displays the three
views of the object at the bottom of the window.
From left to right, they are the left view, front
view, and top view. Press the spacebar to
display the object. Press the spacebar again to
generate a new object.

The program is based on “Three Views of
Cubes” (G422), which primarily focuses on the
ability to draw three views of a given geometric
figure. Therefore, it initially displayed the
geometric figure, and pressing the spacebar
would show the three views below the window.
In this unit, the main learning objective is to
derive the possible arrangements of geometric
figures from three-view drawings. Therefore,
the program first shows the three views below
the window, allowing learners to think about the
spatial structure of the geometric figure (with
multiple possible answers). Pressing the
spacebar would then display the geometric
figure in the center of the window.

H
ik
Hﬂ

o
g
<,

N

Factors and mwl.f:iptes

Characteristics of mulkiples of
2, 5§, and 3

Even and odd numbers

Odd + Even = 0dd
0dd + 0dd = Even

Even + Even = Even

Prime numbers

Get Prime Numbers

() get prime_numbers.py algorithm

There are 4 functions related to factors and
prime numbers in the program.

1. get_factors(n): get all factors of n. If i is a
factor of n, then n/i is also a factor of n. So, we
don't need to find factors from 1 all the way to n
or n/2. Instead, we just need to find factors from
1 to sqrt(n).

2.is_prime_number(n): check if nis a prime
number. Besides 2, only odd numbers that are
not larger than sqgrt(n) need to be checked.

3.get_prime_numbers_slow(n): get all prime
numbers within n by using is_prime_number()
to check each number one by one. This method
IS slower.

4.get_prime_numbers(n): get all prime
numbers within n by removing all multiples of
numbers within the range. The numbers left are
prime numbers. This method is faster. num_list
is a list of all numbers up to n. The values
represent which numbers are removed (False)
and which numbers are left (True). The
numbers left will be prime numbers. To find all
prime numbers within n, we only need to
remove numbers that are multiples of numbers
from 2 to int(sqrt(n)). This is because numbers
that are k times int(sqrt(n)) (k < sqrt(n)) have
already been removed and numbers that are k
times int(sqrt(n)) (k > sqrt(n)) exceed n.

Factors of 100 are: [1, 2, 4, 5, 10, 20, 25, 50, 100]

Prime numbers within 100 are: [2, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]

Number of prime numbers within 10000000: 664579
Running time for slow method: 28.06s

Number of prime numbers within 10000000: 664579
Running time for fast method: 1.11s

Goldbach Conjecture
[goldbach.py

The Goldbach Conjecture states that any even
number greater than 2 can be expressed as the
sum of two prime numbers. For a user-input
even number greater than 2, the program
expresses it as the sum of two prime numbers.

Enter an even number greater than 2: 98

98 = 19 + 79

™N

Cuboid: length, width, height
Cube: edge length
¥ vertices, 12 edqes, & faces

Surface area of cuboids and cubes

Surface area of a cuboid = (length x width + length x height
+ width x height) x 2
S = 2(ab+ ah + bh)

Surface area of a cube = (edge length x edge length) x 6

.)
15 == 6(:[

Volume

Volume of cuboids and cubes

Volume of a cuboid = length x width x height
V = abh
Volume of cube = edge length x edge length x edge length
V =a?

Volume of cuboid (or cube) = base area x height

V =_5h

Volume units (cubic centimeters, cubic
decimelers, cubic mekers)

1 Cubic Decimeter (dm?) = 1000 Cubic Centimeters (cm?)
1 Cubic Meter (m?) = 1000 Cubic Decimeters (dm?)

Volume units (Likters, milliliters)
1 Liter (L) = 1000 Milliliters (mL)

1 Liter (L) = 1 Cubic Decimeter (dm?)

1 Milliliter (mL) = 1 Cubic Centimeter (cm?)

Measuring the volume of irreqular objects

btj d{.slal.m':i.ng waker

'iill
Cuboid Class with Unit Property

[cuboid.py class, exception, decimal

Similar to the program "Polygon Classes with
Area Attributes" (G516), this program features
the Cuboid class with surface area and volume
properties that are calculated based on length,
width, height, or edge length. These properties
are implemented with getters (with no setters)
and cannot be directly modified.

The program also includes the unit property.
When the unit is changed, the dimensions
(length, width, height) adjust accordingly in the
setter for the unit attribute. Both the unit's getter
and setter use the same function name, "unit,"
with the "@property" decorator for the getter and
the "@unit.setter" decorator for the setter.

When instantiating a Cuboid object, 0, 1, or 3
edge arguments can be given. If other numbers
of edge arguments are given, or if any edge
value is not valid, the program can still pass the
syntax test, but errors will occur at runtime -
such errors are called exceptions. Exceptions
can be handled in programs. Exceptions that are
not handled will result in error messages. In
addition to built-in exceptions, there are also
user-defined exceptions that can be raised
manually with the "raise" keyword.

The program defines a custom exception for the
wrong number of edge arguments. If there are
any problems with instantiating a Cuboid object
or setting a property, a corresponding built-in or
user_defined exception will be raised, and the
error message will be displayed.

>>> cuboid = Cuboid(3, 2, unit='dm')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/Users/felix/Desktop/Learn Math with Coding/g523_cuboid/cuboid.py",
line 71, in __init__

raise NumberOfArgumentsError(len(edges))

cuboid.NumberOfArgumentsError: The number of edge arguments can only be @,
1, or 3. You have 2 edge arguments.
>
>>> cuboid = Cuboid(3, unit='dm')
Successfully created a cube.
Edge: 3dm

>>> cuboid.height = 5
>>> print(cuboid)
Cuboid

Length: 3dm

Width: 3dm

Height: 5dm
Surface Area: 78dm?
Volume: 45dm?

>>> cuboid.unit = 'm’
>>> print(cuboid)
Cuboid

Length: @.3m

Width: 0.3m

Height: @.5m

Surface Area: @.78m?
Volume: @.@45m?3

>>>

Practice Volume Unit Conversion

volume_unit_conversion.py dict, exception, random

Randomly generate a specified number of
volume unit conversion questions. Every time a
question is answered, the program will display
whether it is correct or incorrect. In the case of
an incorrect answer, the correct one will be
shown. The total score will be displayed after all
questions are completed (the full score value
can be set; the default is 100 points).

This program is based on “Practice Area Unit
Conversion” (G412) and adds a new unit type
volume to it with 4 volume units mms3, cm3, dms3,
and m3. The program also uses a dictionary to
store all unit types and provides a list for users
to set which unit types they want to practice.

Users can input either decimals or fractions
when converting from a smaller unit to a larger
unit. When there are many digits to be entered,
scientific notation can be used. E.g., 1e3 means
1 followed by three zeros, which is 1000; 1e-3
means 1/(1e3), which is 1/1000 or 0.001.

Question 1/4:
? le-9
Hooray!

Question 2/4:
? 1000
Super!

Question 3/4:
? 0.001
Bravo!

Question 4/4: 1mm3 = __dm3

? 1/1000
Incorrect. The answer is 1le-06 or 1/1000000.

Your score 1is 75/100.

Meaning and Properties
of Fractions

Meaning of fractions

The unit fraction

Fractions and division:

a..+b:? (b 0)
: |

Proper fractions and improper
fractions: improper fractions can be
converted into whole numbers or

mixed numbers,

Prime factorization and short division
Basic properties of fractions: the value
of a fraction remains the same when
both the numerator and denominator
are mutf:ipti.ed or divided btj the same
number (excluding o),

Greatest common divisor

Least commomn MuLEF.FLe

Fraction simplification

Comparing fractions with different

denominators
Fractions and decimals

Conversion between fractions and

decimals

Greatest Common Divisor and Least
Common Multiple

(] gcd lcm.py algorithm

This program uses two methods to find the
greatest common divisor (GCD) of two
numbers, with the larger number denoted as "a"
and the smaller number as "b.”

The first method employs a loop to sequentially
check if numbers smaller than "b" are common
factors of both numbers, eventually identifying
the greatest common factor among all the
common factors. The optimized number of
iterations is from 1 to sqrt(b), similar to the
get_factors() function in “Get Prime Numbers”
(G522). However, even with optimized
iterations, the program may still take a long time
to execute when dealing with large numbers.

The second method employs Euclid’s division
algorithm. The algorithm is based on the
principle that the greatest common factor of two
integers is the same as the greatest common
factor of the smaller number and the remainder
of their division. The algorithm works as follows:

1. Divide the larger number by the smaller
number, with the larger number as the dividend
and the smaller number as the divisor. To find
the greatest common factor of the dividend and
divisor, only the divisor and the remainder of
their division need to be considered.

2. Repeat the first step using the divisor as the
new dividend and the remainder as the new
divisor.

3. Continue this process until the remainder
becomes 0. At this point, the divisor is the
greatest common factor of the original two
numbers.

The Euclidean algorithm is highly efficient at
reducing two large numbers quickly, making it
ideal for finding the greatest common factor.
The program also utilizes the GCD to determine
the least common multiple (LCM), as the
product of two numbers is equal to the product
of their GCD and LCM.

The GCD of 121932630989178480 and 121932631112635269 is 123456789.
Running time for slow method: 13.52s

The GCD of 121932630989178480 and 121932631112635269 is 123456789.

Running time for fast method: 0.0s

The LCM of 36 and 48 is 144.

Convert Decimal to Simplest Fraction

] decimal_to_fraction.py string

In this program, the user inputs a decimal
number, and the program converts it into the
simplest fraction, displaying the result on the
screen. To simplify the fraction, the program
uses the greatest common divisor (GCD)
calculation function from Program 1 to obtain
the GCD of the numerator and denominator.

Enter a decimal: 0.48

0.48 = 12/25

Clockwise and

counterclockwise robakion

of shapes around a point

Rotation

D rotation.py turtle, coordinate, random

This program randomly generates a regular
polygon and rotates it around a specified point
and by a given rotation angle. To distinguish
between the edges of the shape before and
after rotation, each edge of the shape is
assigned a different color.

_/

.@>
<))
™N

Addition and Subtraction
of Fractions

Addition and subtraction of fractions

with common denominakors

Addition and subtraction of fractions

with different denominators

Mixed operations of fraction addition

and subtraction

Simplifying calculations using laws of
addition

&9

Addition and Subtraction of Fractions

[add sub_fractions.py string

At the beginning of the program, the user is
prompted to input two fractions or integers and
choose between addition or subtraction. The
program then calculates and displays the result
in its simplest form.

When performing fraction addition and
subtraction, the program calls the function for
finding the least common multiple from the
program "Greatest Common Divisor and Least
Common Multiple" (G524). It first converts
fractions with different denominators to
fractions with the same denominator. After
performing addition or subtraction with
common denominators, it uses the fraction
simplification function from the program
"Convert Decimal to Simplest Fraction" (G524)
to simplify the result.

Enter the first fraction: 1/3
Enter the second fraction: 1/6
Choose between addition and subtraction (+ or =-)? +

1/3 + 1/6 = 1/2

Enter the first fraction: 3/5
Enter the second fraction: 1
Choose between addition and subtraction (+ or =)? -

1= 3/5 = 2/5

= =':.-_.f}

& 4
Ted
=

200 -
150}
100} _
50|
o . ..

Line charks

Mulki-Lline charts

Improve Data Class to Draw
Multi-Line Charts

(] data3py matplotlib, class, 2d list

The program adds the line() method for
drawing multi-line charts to the Data class in
“Mean Value and Grouped Bar Charts” (G428).
Except for the newly added method, the rest of
the code in the Data class remains unchanged.

| | Sun | Mon | Tue | Wed | Thu | Fri | Sat |

| Math | 3 | 1 | @ | 2 | 1 | 3 | 2 |

| Music | 3 | 2 | 2 | 2 | 1 | 3 | 1 |

| P.E.| @ | 1 | 2 | 3 | e | e | o |

o Figure 1

Daily Study Time

—&— Math
- Music
—a— PE.
4 .
£ 37
[
[=R
1%y}
i
3
z 27
l <
D <
Sun Mon Tue Wed Thu Fri Sat
Day

a€>PQ= X=Fri y=3.364

o
3
N
»

ldentify the Outlier

Finding the outlier
in the fewest steps

Determining the minimum number of steps
Listing the process of finding the outlier step by step

Identify the Outlier

[identify_outlier.py recursion, algorithm, string

In this program, the user first enters the number
of items that need to be checked, and the
program displays the entire process of finding
the outlier (whose weight is different) from
these items. The challenge of the program lies
in the fact that each weighing has two
scenarios: balanced and unbalanced. In each
scenario, there are again balanced and
unbalanced weighings, and so on, creating a
nested, branching structure for the entire
process. This is different from the common
program flow with sequential, conditional, loop,
or function call statements.

The program uses recursion - an algorithm that
solves a problem by solving a smaller instance
of the same problem until the problem is so
small that it can be solved directly (this smallest
problem is known as the base case).
Specifically, recursion uses functions that call
themselves from within their own code. When
using recursion, it is essential to provide
termination conditions (base cases). Otherwise,
the program will result in infinite recursion and
end up exceeding the maximum recursion
depth (default is 1000 in Python).

How many items need to be checked? 20
(1, 2, 3, 4,5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

Round 1% [1, 2,.3, 4, 5,6, 7] vs: [8, 9, 18, 11, 12, 13, 14]
If balanced:
.«»«Round 2: [15, 16] vs [17, 18]
««:« LT balanced:
Round 3: [19] vs [20]
The defective item is identified.
....If unbalanced, assuming [15, 16] contains the outlier:
Round 3: [15] vs [16]
The defective item is identified.
If unbalanced, assuming [1, 2, 3, 4, 5, 6, 7] contains the outlier:
.«+««ROund 2: [1, 2] vs [3, 4]
....IT balanced:
Round 3: [5] vs [6]
If balanced, 7 contains the outlier.
If unbalanced, the defective item is identified.
.«».If unbalanced, assuming [1, 2] contains the outlier:
Round 3: [1] vs [2]
The defective item is identified.

We can ensure that we will find the defective item in at least 3 rounds.

| would like to express my gratitude to my brother Henry for his
active collaboration throughout the entire project.

| extend my thanks to the mentors and friends who have
provided me with guidance and assistance in various academic
fields, especially my dad, who first introduced me to
mathematics and programming.

Special appreciation goes to my mom for providing illustrations
for this handbook.

Email: math-coding@hotmail.com
Project code is on GitHub

Code licensed under Apache-2.0, documents including handbooks
licensed under CC BY 4.0.

© 2023

mailto:math-coding@hotmail.com
https://creativecommons.org/licenses/by/4.0/
https://github.com/feli10/math-coding
https://github.com/feli10/math-coding/blob/main/LICENSE

	Cover
	Handbook Introduction and Usage Information
	Contents
	Grade 3 Semester 1
	G311 Telling Time - Hours, Minutes, and Seconds
	G312 2-Digit Addition and Subtraction
	G313 Measurements
	G314 Vertical Addition and Subtraction
	G315 Multiplication Word Problems
	G316 Short Multiplication
	G317 Rectangles and Squares
	G318 Understanding Fractions
	G319 Sets

	Grade 3 Semester 2
	G321 Orientations
	G322 Short Division
	G323 Tables
	G324 2-Digit Long Multiplication
	G325 Area
	G326 Years, Months, and Days
	G327 Understanding Decimals
	G328 Combinations

	Grade 4 Semester 1
	G411 Working with Large Numbers
	G412 Large Area Units
	G413 Measuring Angles
	G414 3-Digit Long Multiplication
	G415 Parallelograms and Trapezoids
	G416 Long Division
	G417 Bar Charts
	G418 Optimization

	Grade 4 Semester 2
	G421 Order of Operations
	G422 Observing Objects
	G423 Basic Laws of Operation
	G424 Meaning and Properties of Decimals
	G425 Triangles
	G426 Addition and Subtraction of Decimals
	G427 Reflective Symmetry
	G428 Mean Value and Grouped Bar Charts
	G429 Chicken and Rabbit Problem

	Grade 5 Semester 1
	G511 Decimal Multiplication
	G512 Position
	G513 Decimal Division
	G514 Probability
	G515 Simple Equations
	G516 Area of Polygons
	G517 Tree Planting Problem

	Grade 5 Semester 2
	G521 Observing Objects 2
	G522 Factors and Multiples
	G523 Cuboids and Cubes
	G524 Meaning and Properties of Fractions
	G525 Rotation
	G526 Addition and Subtraction of Fractions
	G527 Line Charts
	G528 Identify the Outlier

	Acknowledgements

